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Summary  
We present a wave-equation inversion method that inverts skeletonized data for the subsurface velocity 
model. The skeletonized representation of these seismic traces consist of the low rank latent-space 
variables predicted by a well-trained autoencoder neural network. The input to the autoencoder consist 
of the recorded common shot gathers, and the implicit function theorem is used to determine the 
perturbation of the skeletonized data with respect to the velocity perturbation. The final velocity model 
is the one that best predicts the observed latent-space parameters. We denote this hybrid inversion 
method as Newtonian machine learning (NML) inversion because it inverts for the model parameters 
by combining the deterministic laws of Newtonian physics with the statistical capabilities of machine 
learning. 
 

Introduction 
Full waveform inversion (FWI) has been shown to accurately invert seismic data for high-resolution 
velocity model. However, the success of FWI heavily relies on a good initial model that is close to the 
true model, otherwise, cycle-skipping problem will trap FWI in a local minimum. The main reason non-
linear inversion gets stuck in a local minimum is that the data are very complex (i.e, wiggly in time), 
which means that the objective function is very complex and characterized by many multiple 
minimums. To avoid this problem, on way is to skeletonize the complex data into a much simpler form 
and use the skeletonized information as a new misfit function for inversion. 
 
The autoencoder neural network is an unsupervised deep learning method that is trained for 
dimensionality reduction. An autoencoder maps the data into a lower dimensional space by extracting 
the data’s most important features, these features are also denoted as the skeletonized representation of 
the input data. In this abstract, we feed the observed traces into the autoencoder to get their 
corresponding low-dimension representation. We build the misfit function as the sum of the squared 
differences between the observed and predicted encoded value  

𝜖𝜖 = ∑ ∑ �𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜(𝑔𝑔|𝑠𝑠) − 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔|𝑠𝑠)�
2
2

𝑔𝑔𝑠𝑠 , 
Where 𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜(𝑔𝑔|𝑠𝑠) and 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔|𝑠𝑠) represent the encoded value of the observed and synthetic traces by 
autoencoder. To compute the gradient with respect to the model parameters such as the velocity in each 
pixel, we use this implicit function theorem to compute the perturbation of the skeletonized information 
with respect to the velocity. The high-level strategy for inverting the skeletonized latent variable is 
summarized in  Figure 1, where L corresponds to the forward modeling operator of the governing 
equations, such as wave-equation 
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Figure1: The high-level strategy for Newtonian machine learning inversion. 

 

Numerical Example 
We test this NML inversion method on a layered model and a crosswell acquisition geometry. Figures 
2a and 2b show the true and initial velocity model, respectively. A fixed-spread crosswell acquisition 
geometry is deployed where the source and receiver wells are located at x = 10 and x = 1000 m, 
respectively. 

 
Figure2: The (a) true and (b) initial velocity model. 

 
The training set includes 4000 observed seismic traces and trained by an three layer autoencoder 
network with Tanh activation function. After the autoencoder neural network is well trained, we input 
the synthetic traces generated in each iteration to get their encoded values. Therefore the skeletonized 
misfit and gradient can be calculated in order to update the velocity model. Figure 3a shows the inverted 
result which successfully recovers the three high-velocity layers and two of it’s vertical profiles are 
compared in Figures 3b and 3c, respectively, where the blue, red and black lines represent the velocity 
profiles from the initial, true an inverted velocity models. 

 
Figure3: The (a) inverted model and the velocity comparison at (b) x = 0.4 km and (c) x = 0.6 km. 


